Menurunkan rumus titik berat penampang seperempat lingkaran
a. Terhadap sumbu x
\(Y^{2}=R^{2}-X^{2}\)
\(Y \times A=\int \bar{y}.dA\)
\(Y \times \left ( \frac{1}{4}\pi R^{2} \right )=\int \frac{y}{2} \times y \times dx\)
\(Y=\frac{\int \frac{y}{2}.y.dx}{\frac{1}{4}\pi R^{2}}\)
\(Y=\frac{2\int_{0}^{R}y^{2}.dx}{\pi R^{2}}\)
\(Y=\frac{2\int_{0}^{R}\left ( R^{2}-X^{2} \right ).dx}{\pi R^{2}}\)
\(Y=\frac{2\left [ R^{2}X-\frac{X^{3}}{3} \right ]_{0}^{R}}{\pi R^{2}}\)
\(Y=\frac{2\left [ R^{3}-\frac{R^{3}}{3} \right ]}{\pi R^{2}}\)
\(Y=\frac{2\left [ \frac{2}{3}R^{3} \right ]}{\pi R^{2}}\)
\(Y=\frac{4R}{3\pi }\)
dengan langkah yang sama pada sumbu X, lakukan juga pada sumbu Y
b. Terhadap sumbu Y.
\(X=\frac{4R}{3\pi }\)